Assessment

Topic: Compact Metric Spaces

Choose the correct option

1. If A is a closed subset of a compact metric space (X, d), then

(a) A may not be compact (b) A is compact and bounded

(c) A is compact but not bounded (d) none of these

2. A metric space (X, d) is sequentially compact, then the statements
P: Every sequence {x_n} from X have convergent subsequence.
Q: (X, d) is complete and totally bounded.

(a) P is true, Q is false
(b) P is false, Q is true
(c) Both P and Q are false
(d) both P and Q are true

3. The set $X = \mathbb{R}$ with the metric $d(x, y) = \frac{|x-y|}{1+|x-y|}$ is

- (a) Bounded but not compact
 (b) bounded but not complete
 (c) Complete but not bounded
 (d) compact but not complete
 - 4. Let X = (0,2]. In (X, d_u) consider A = (0,1], then

(a) A is closed but not compact	(b) A is open and compact

- (c) A is closed and compact (d) A is open but not compact
 - 5. Which of the following is not totally bounded?

(a)
$$A = \{x \in \mathbb{R} : 1 \le x \le 5\}$$

(b) $A = \{x \in \mathbb{R} : -5 < x < 2\}$
(c) $A = \{x \in l_2 : \sqrt{\sum_{i=1}^{\infty} x_i^2}\} = 1$
(d) $A = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + y^2 \le 1\}$

6. Let (X, d) and (Y, ρ) be metric spaces and $f: X \to Y$ be a map, then which of the following statements is false?

(a) If f is continuous and $A \subseteq X$ is compact, then f(A) is closed and bounded in Y

(b) If f is continuous and X is compact and $A \subseteq X$ is closed in X, then f(A) is closed and bounded in Y

- (c) If $A \subseteq X$ is compact and f(A) is compact, then f is continuous
- (d) If f is continuous and $A(\subseteq X)$ is compact then f(A) is compact
 - 7. A metric space (X, d) satisfies Bolzano Weierstrass Property then
- (a) Every infinite sequence $\{x_n\}$ has no cluster point
- (b) Every infinite sequence $\{x_n\}$ has at least one cluster point
- (c) (X, d) is not sequentially compact
- (d) (X, d) is not compact

8. Which of the following subset of $\mathbb R$ is closed but not compact

(a)
$$\mathbb{N}$$
 (b) [-2,5]
(c) {-8, -1, 5,7} (d) $Z \cap (-10,10)$

9. Let (X, d) be a metric space. Consider the following statements:

P: $A \subseteq X$ is compact $\Rightarrow A$ is totally bounded **Q:** $A \subseteq X$ is totally bounded $\Rightarrow A$ is compact **R:** $A \subseteq X$ is bounded $\Rightarrow A$ is totally bounded **S:** $A \subseteq X$ is totally bounded $\Rightarrow A$ is bounded, then

(a) only P and Q are true
(b) only Q and R are true
(c) only P and S are true
(d) P,Q, R,S all are true

10. If F is a closed and bounded subset of \mathbb{R} , then each open covering of F have

- (a) Finite sub-covering of F
- (b) No finite sub-covering of F
- (c) Infinite sub-covering of F
- (d) None of the above